本站
非官方網(wǎng)站,信息完全免費(fèi),僅供參考,不收取任何費(fèi)用,請(qǐng)以官網(wǎng)公布為準(zhǔn)!
2014
銀川一中二模理科
數(shù)學(xué)答案
絕密★啟用前
2014年普通高等學(xué)校招生全國(guó)統(tǒng)一考試
理 科 數(shù) 學(xué)
(第二次模擬考試)
本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,其中第Ⅱ卷第22~24題為選考題,其它題為必考題?忌鞔饡r(shí),將答案答在答題卡上,在本試卷上答題無(wú)效?荚嚱Y(jié)束后,將本試卷和答題卡一并交回。
注意事項(xiàng):
1.答題前,考生務(wù)必先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上,認(rèn)真核對(duì)條形碼上的姓名、準(zhǔn)考證號(hào),并將條形碼粘貼在答題卡的指定位置上。
2.選擇題答案使用2B鉛筆填涂,如需改動(dòng),用橡皮擦干凈后,再選涂其他答案的標(biāo)號(hào);非選擇題答案使用0.5毫米的黑色中性(簽字)筆或碳素筆書(shū)寫(xiě),字體工整、筆跡清楚。
3.請(qǐng)按照題號(hào)在各題的答題區(qū)域(黑色線框)內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效。
4.保持卡面清潔,不折疊,不破損。
5.做選考題時(shí),考生按照題目要求作答,并用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑。
第I卷
一、選擇題:本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
1.已知全集U=R,集合,,則集合等于
A. B. C. D.
2.若復(fù)數(shù)滿足,則=
A. B. C. D.
3.已知等比數(shù)列的公比大于1,,,則
A.96 B.64 C.72 D.48
4.設(shè)l,m,n表示不同的直線,α、β、γ表示不同的平面,給出下列四個(gè)命題:
①若m∥l,且m⊥α,則l⊥α; ②若m∥l,且m∥α,則l∥α;
③若α∩β=l,β∩γ=m,γ∩α=n,則l∥m∥n;
④若α∩β=m,β∩γ=l,γ∩α=n,且nβ,則l∥m.
其中正確命題的個(gè)數(shù)是
A.2 B.1 C.3 D.4
5從拋物線上一點(diǎn)P引拋物線準(zhǔn)線的垂線,
垂足為M,且|PM|=5,設(shè)拋物線的焦點(diǎn)為F,
則△MPF的面積( )
A.5B.10C.20D.
6閱讀如圖所示的程序框圖,若輸入,則輸出的值是
A. B. C. D.
7.將甲、乙、丙等六人分配到高中三個(gè)年級(jí),每個(gè)年級(jí)2人,要求甲必須在高一年級(jí),乙和丙均不能在高三年級(jí),則不同的安排種數(shù)為
A.18 B.15 C.12 D.9
8.某幾何體的三視圖如圖所示,則該幾何體的表面積為
A. B.
C.(2)D.(2)
9.△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,若<cos A,則△ABC為
A.鈍角三角形 B.直角三角形 C.銳角三角形 D.等邊三角形
10.現(xiàn)有四個(gè)函數(shù):①;②;③;④的圖象(部分)如下:
則按照從左到右圖象對(duì)應(yīng)的函數(shù)序號(hào)安排正確的一組是
A.①④②③ B.①④③② C.④①②③ D.③④②①
11過(guò)雙曲線的右頂點(diǎn)A作斜率為的直線,該直線與雙曲線的兩條漸近線的交點(diǎn)分別為B, C.若,則雙曲線的離心率是
A. B. C. D.
12設(shè)函數(shù)在(-∞,+∞)內(nèi)有定義,對(duì)于給定的正數(shù),定義函數(shù):,取函數(shù),若對(duì)任意的,恒有,則
A. k的最大值為2 B. k的最小值為2
C. k的最大值為1 D. k的最小值為1
本卷包括必考題和選考題兩部分.第13題~第21題為必考題,每個(gè)試題考生都必須做答.第22題~第24題為選考題,考生根據(jù)要求做答.
二、填空題:本大題共4小題,每小題5分.
13.已知向量,,且,若變量x,y滿足約束條件則z的最大值為
14的二項(xiàng)展開(kāi)式中含的項(xiàng)的系數(shù)為
15若,且,則的值為 .
16在平面直角坐標(biāo)系中,記拋物線與x軸所圍成的平面區(qū)域?yàn),該拋物線與直線y=(k>0)所圍成的平面區(qū)域?yàn)椋騾^(qū)域內(nèi)隨機(jī)拋擲一點(diǎn),若點(diǎn)落在區(qū)域內(nèi)的概率為,則k的值為
17.(本小題滿分12分)
設(shè)數(shù)列的各項(xiàng)均為正數(shù),它的前項(xiàng)的和為,點(diǎn)在函數(shù)的圖像上;數(shù)列滿足.其中.
(Ⅰ)求數(shù)列和的通項(xiàng)公式;
(Ⅱ)設(shè),求證:數(shù)列的前項(xiàng)的和().
18 (本題滿分12分)
今年年初,我國(guó)多個(gè)地區(qū)發(fā)生了持續(xù)性大規(guī)模的霧霾天氣,給我們的身體健康產(chǎn)生了巨大的威脅。私家車的尾氣排放也是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開(kāi)私家車,盡量選擇綠色出行方式,為預(yù)防霧霾出一份力。為此,很多城市實(shí)施了機(jī)動(dòng)車車尾號(hào)限行,我市某報(bào)社為了解市區(qū)公眾對(duì)“車輛限行”的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]頻數(shù)510151055贊成人數(shù)469634
(Ⅰ)完成被調(diào)查人員的頻率分布直方圖;
(Ⅱ)若從年齡在[15,25),[25,35)的被調(diào)查
者中各隨機(jī)選取兩人進(jìn)行進(jìn)行追蹤調(diào)查,記選中的
4人中不贊成“車輛限行”的人數(shù)為ξ,求隨機(jī)變量ξ
19.(本小題12分)
已知正方形ABCD的邊長(zhǎng)為1,.將正方形ABCD沿對(duì)角線折起,使,得到三棱錐A—BCD,如圖所示.
(I)若點(diǎn)M是棱AB的中點(diǎn),求證:OM∥平面ACD;
(II)求證:;
(III)求二面角的余弦值.
20.(本小題滿分12分)
已知F1、F2分別是橢圓的左、右焦點(diǎn).
(Ⅰ)若P是第一象限內(nèi)該圖上的一點(diǎn),,求點(diǎn)P的作標(biāo);
(Ⅱ)設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓交于同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為作標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
21.(本小題滿分12分)
設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)當(dāng)時(shí),設(shè)函數(shù),若對(duì)于,,使成立,求實(shí)數(shù)的取值范圍.
22.(本小題滿分10分)選修4—1: 幾何證明選講.
如圖,在正ΔABC中,點(diǎn)D、E分別在邊BC, AC上,且,,AD,BE相交于點(diǎn)P.
求證:(I) 四點(diǎn)P、D、C、E共 圓;
(II) AP CP。
已知直線為參數(shù)), 曲線 (為參數(shù)).
(I)設(shè)與相交于兩點(diǎn),求;
(II)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的倍,縱坐標(biāo)壓縮為原來(lái)的倍,得到曲線,設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最小值.
已知函數(shù).
(I)若不等式的解集為,求實(shí)數(shù)a的值;
(II)在(I)的條件下,若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍.
題號(hào)123456789101112答案DCAABCDBAACD13. 3 14. 15 15. 1或
17.⑴由已知條件得, ①
當(dāng)時(shí),, ②
①-②得:,即,
∵數(shù)列的各項(xiàng)均為正數(shù),∴(),
又,∴;∵,
∴,∴;
⑵∵,
∴,
,
兩式相減得,
∴.
()的所有可能取值為:0,1,2,3……………6分
所以的分布列是:
19. (I) 在正方形ABCD中,是對(duì)角線的交點(diǎn),
O為BD的中點(diǎn), M為AB的中點(diǎn), OM∥AD.
又AD平面ACD,OM平面ACD, OM∥平面ACD.
(II)證明:在中,,,
,.
又 是正方形ABCD的對(duì)角線,,
又.
(III)由(II)知,則OC,OA,OD兩兩互相垂直,如圖,以O(shè)為原點(diǎn),建立空間直角坐標(biāo)系.則,
是平面的一個(gè)法向量.,,
設(shè)平面的法向量,則,.
即,
所以且令則,,解得.
從而,二面角的余弦值為.
20.(Ⅰ)易知,,.
∴,.設(shè).則
,又,
聯(lián)立,解得,.
(Ⅱ)顯然不滿足題設(shè)條件.可設(shè)的方程為,設(shè),.
聯(lián)立
∴,由
,,得.①又為銳角,∴
又
∴
∴.②
綜①②可知,∴的取值范圍是
21. 函數(shù)的定義域?yàn)椋?
(Ⅰ)當(dāng)時(shí),,
∴在處的切線方程為
(Ⅱ),的定義域?yàn)?/div>
當(dāng)時(shí),,的增區(qū)間為,減區(qū)間為
當(dāng)時(shí),
,的增區(qū)間為,減區(qū)間為,
, 在 上單調(diào)遞減
,
時(shí),
(Ⅲ)當(dāng)時(shí),由(Ⅱ)知函數(shù)在區(qū)間上為增函數(shù),
所以函數(shù)在上的最小值為
若使成立在上的最小值不大于
在[1,2]上的最小值(*)
又
①當(dāng)時(shí),在上為增函數(shù),
與(*)矛盾
②當(dāng)時(shí),,
由及得,
③當(dāng)時(shí),在上為減函數(shù),
, 此時(shí)
綜上所述,的取值范圍是
22.證明:()在中,由知:
≌
即
所以四點(diǎn)共圓;
(II)如圖,連結(jié).
在中,,,
由正弦定理知
由四點(diǎn)共圓知,,
所以
23.解.(I)的普通方程為的普通方程為
聯(lián)立方程組解得與的交點(diǎn)為,,
則.
(II)的參數(shù)方程為為參數(shù)).故點(diǎn)的坐標(biāo)是,從而點(diǎn)到直線的距離是
,
由此當(dāng)時(shí),取得最小值,且最小值為.
解:()由得,,即,
,。分
()由()知令,
則,
的最小值為4,故實(shí)數(shù)的取值范圍是。10分
數(shù)學(xué)學(xué)習(xí) http://foodtvandme.com/math/